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The complete genome sequence of Chromobacterium 
violaceum reveals remarkable and exploitable 
bacterial adaptability 
Brazilian National Genome Project Consortium* 

Edited by Robert Haselkorn, University of Chicago, Chicago, IL, and approved July 7, 2003 (received for review April 11, 2003) 

Chromobacterium violaceum is one of millions of species of free-living 
microorganisms that populate the soil and water in the extant areas 
of tropical biodiversity around the world. Its complete genome 
sequence reveals (4) extensive alternative pathways for energy gen- 
eration, (il) 500 ORFs for transport-related proteins, (iil) complex and 
extensive systems for stress adaptation and motility, and (iv) wide- 
spread utilization of quorum sensing for control of inducible systems, 
all of which underpin the versatility and adaptability of the organism. 
The genome also contains extensive but incomplete arrays of ORFs 
coding for proteins associated with mammalian pathogenicity, pos- 
sibly involved in the occasional but often fatal cases of human C. 
violaceum infection. There is, in addition, a series of previously 
unknown but important enzymes and secondary metabolites includ- 
ing paraquat-inducible proteins, drug and heavy-metal-resistance 
proteins, multiple chitinases, and proteins for the detoxification of 
xenobiotics that may have biotechnological applications. 

The genomes of soil- and water-borne free-living bacteria have 
received relatively little attention thus far in comparison to 

pathogenic and extremophilic organisms, yet they provide funda- 
mental insights into environmental adaptation strategies and rep- 
resent a rich source of genes with biotechnological potential and 
medical utility. A particularly interesting organism of this kind is 
Chromobacterium violaceum, a Gram-negative 3-proteobacterium 
first descted at the end of the 19th century (1), which dominates 
a variety of ecosystems in tropical and subtropical regions. This 
bacterium has been found to be highly abundant in the water and 
borders of the Negro river, a major component of the Brazilian 
Amazon (2) and as a result has been studied in Brazil over the last 
three decades. These, in general, have focused on the most notable 
product of the bacterium, the violacein pigment, which has already 
been introduced as a therapeutic compound for dermatological 
purposes (3). Violacein also exhibits antimicrobial activity against 
the important tropical pathogens Mycobacterium tuberculosis (4), 
Trypanosoma cruzi (5), and Leishmania sp. (6) and is reported to 
have other bactericidal (2, 7-10), antiviral (11 ), and anticancer (12, 
13) activities. 

Some other aspects of the biotechnological potential of C. 
violaceum have also begun to be explored, including the synthesis 
of poly(3-hydroxyvaleric acid) homopolyester and other short- 
chain polyhydroxyalkanoates, which might represent alternatives 
to plastics derived from petrochemicals (14, 15), the hydrolysis 
of plastic films (16), and the solubilization of gold through a 
mercury-free process, thereby avoiding environmental contam- 
ination (17, 18). These studies, however, have been based on 
knowledge of only a tiny fraction of the genetic constitution of 
the organism. In addition, the more basic issues of the mecha- 
nisms and strategies underlying the adaptability of C. violaceum. 
including its observed but infrequent infection of humans, have 
not been deeply investigated at the molecular and genetic levels. 

To begin to rectify the paucity of our basic knowledge of this 
remarkable organism we sequenced and annotated the complete 
genome of C. violaceum type strain ATCC 12472. This has 
revealed a detailed portrait of the molecular complexity required 
for the organism's versatility as well as an extended compendium 

of ORFs that significantly increase the biotechnological poten- 
tial of the bacterium. 

Materials and Methods 

The sequencing and analysis of the C. violaceum genome were 
entirely executed by the Brazilian National Genome Sequencing 
Consortium comprising 25 sequencing laboratories, 1 bioinfor- 
matics center, and 3 coordination laboratories distributed 
throughout Brazil. 

This paper was submitted directly (Track II) to the PNAS office. 

Abbreviation: TTSS, type III secretory system. 

Data deposition: The sequence reported in this paper has been deposited in the GenBank 
database (accession no. AE016825). 
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Sequencing and Assembly. The C. violaceum type strain ATCC 
12472 was used as DNA source for the construction of cosmid 
libraries in Lawrist 4 and short insert libraries in pUC18 as 
described elsewhere (19, 20). Template preparation and DNA 
sequencing reactions were performed by using standard proto- 
cols. The latter used DYEnamic ET dye terminator cycle 
sequencing (MegaBACE) and the MegaBACE 1000 capillary 
sequencer (Amersham Pharmacia Biotech). Approximately 
80,000 reads with PHRED scores >20 were generated from both 
ends of plasmid clones ranging from 2.0 to 4.0 kb, providing a 
13-fold genome coverage. These sequences were assembled by 
using PHRED/PHRAP/CONSED (www.phrap.org). Both ends of 
3,350 cosmid clones with an average 40-kb insert size were also 
sequenced, providing a validation check of the final assembly. 
Sequencing gaps were closed by using the information generated 
by autofinisher. A new strategy, PCR-assisted contig extension 
(21), was also used for physical gap closure. 

Genome Annotation. Annotation was carried out by using the system 
for automated bacterial integrated annotation (unpublished data), 
developed to integrate public domain and purpose-built software 
for the automated identification of genome landmarks including 
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Table 1. General features of the C. violaceum genome 

Length, bp 4,751,080 
G + C content 64.83% 
Total no. of ORFs 4,431 
Percentage of genome constituting coding regions 89% 

Average ORF length, bp 954 
No. of known proteins 2,717 
No. of conserved hypothetical proteins 958 
No. of hypothetical proteins 756 
rRNAs 8 x (16S-23S-5S) 
tRNAs 98 

tRNA and rRNA genes, repetitive elements, and ORFs likely to 
encode proteins. For putative functional attribution, BLAST pro- 
grams (www.ncbi.nlm.nih.gov) were used to search for similarity in 
the main sequence databases. These results were instrumental in 
identifying metabolic pathways based on the Kyoto Encyclopedia of 
Genes and Genomes (22). For comparison of protein sequences 
between species, we used COG (23), INTERPRO (24), PRINTS 
(www.bioinf.man.ac.uk/dbbrowser/PRINTS), PSORT (25), and 
TCDB (http://tcdb.ucsd.edu/tcdb). Noncoding regions were anno- 
tated by using software that seeks ribosomal binding sites for the 
identification of promoters and operators. Paralogous gene families 
were defined by using a cutoff E value of 10-5 with at least 60% 
query coverage and 50% identity. 

Results and Discussion 
General Features of the Genome. The complete genome of the C. 
violaceum consists of a single circular chromosome of 4,751,080 bp 
with an average G+C content of 64.83% (see Table 1 and supple- 
mentary information at www.brgene.lncc.br/cviolaceum; GenBank 
accession no. AE016825). There are 4,431 uniformly distributed 
predicted protein coding ORFs that cover 89% of the genome and 
have an average length of 954 bp. Of these, 2,717 (61.3%) could be 
assigned putative functions, whereas 958 (21.6%) were identified as 
conserved hypothetical proteins. The remaining 756 (17.1%) were 
designated hypothetical proteins. Of the conserved hypothetical 
ORFs, 499 have protein motifs contained within both INTERPRO 
and COG, whereas 242 have motifs contained in either one or the 
other. Among the hypothetical ORFs, 68 have motifs contained in 
both and 135 in only one of the two databases. Of the 131 
paralogous families, 111 (84.7%) contain two members, but some 
contain as many as six ORFs. The functions of approximately 
one-third of the families are related to transport, and approximately 
one-fourth have unknown functions (see supplementary informa- 
tion at www.brgene.lncc.br/cviolaceum). There are 98 tRNA genes 
representing all 20 amino acids and 8 rRNA operons that are 
identical in their coding region, although 6 contain a 100-bp insert 
in the spacer region. The likely origin of replication is identifiable 
based on G+C skew and the positions of dnaA, dnaN, and gyrA (26). 

Comparison with Other Sequenced Genomes. Comparison of the C. 
violaceum ORFs with those of other organisms reveals that 17.4% 
have closest similarity to ORFs of Ralstonia solanacearum (27), a 
soil-borne phytopathogen (27); 9.75% to ORFs of Neisseria men- 
ingitidis serogroup A, the causal agent of a serious human disease 
(28); and 9.61% to ORFs of Pseudomonas aeruginosa, a free-living 
bacterium causing opportunistic infections in humans (29) (see 
supplementary information at www.brgene.lncc.br/cviolaceum). 
The ORFs with highest similarity to R. solanacearum are mostly 
from COG categories N-Q (cell motility, posttranslational modifi- 
cation, inorganic ion transport, and secondary metabolite biosyn- 
thesis, respectively) and thus are directly related to the bacterium's 
interactions with the environment. Approximately half (50.1%) of 
these ORFs with highest similarity with R. solanacearum are absent 
from N. meningitides. This suggests that they may be restricted to 
free-living organisms. Thus, environmental adaptation is to some 
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Table 2. Comparative distribution of ORF function among selected free-living organisms 

cv* bs* ec* dr* tm* pa* sc* xcc* pp* 

COG categories 
C, energy production and conversion 

D, cell division and chromosome partitioning 

E, amino acid transport and metabolism 

F, nucleotide transport and metabolism 

G, carbohydrate transport and metabolism 

H, coenzyme metabolism 

I, lipid metabolism 

J, translation, ribosomal structure, and biogenesis 

K, transcription 

L, DNA replication, recombination, and repair 

M, cell envelope biogenesis, outer membrane 

N, cell motility and secretion 

O, Posttranslational modification, protein 
turnover, chaperones 

P, inorganic ion transport and metabolism 

Q, secondary metabolites biosynthesis, transport, 
and catabolism 

R, general function prediction only 

S, function unknown 

T, Transduction mechanisms 

Not in COGS 

Total no. of ORFs 
Genome size, Mb 
ORFs/100 kb 

*cv, C. violaceum; bs, Bacillus subtilis; ec, Escherichia coli; dr, Deinococcus radiodurans; tm, Thermotoga maritima; pa, P. aeruginosa; sc, Streptomyces coelicolor 
xcc, Xanthomonas campestris citrus; pp, Pseudomonas putida. 

extent due to the presence or absence of particular ORFs within the 

genome, which is a reflection of the overall differential distribution 
of ORFs between free-living and commensal organisms. In con- 

trast, the ORFs with highest similarity to N. meningitidis mostly 
belong to COG category J (ribosomal structure, biogenesis, and 

translation) and are present in all four genomes. This is in keeping 
with the concept that phylogenetic relationships are best reflected 
in ORFs for core housekeeping and structural proteins. 

We undertook a survey of the general distribution of ORF 
functions using COG because it allows a standardized comparison 
with other sequenced genomes (see Table 2 and supplementary 
information at www.brgene.lncc.br/cviolaceum). This revealed 
that, in common with several of the other free-living bacteria, C. 
violaceum has a high proportion of ORFs associated with signal 
transduction mechanisms (COG category T) as well as cell 

motility and secretion (COG category N). These functions are 

directly involved in environmental interactions, and the larger 
number of ORFs in these categories thus reflects the need to be 
able to withstand environmental variability, which is not typically 
encountered by commensal organisms. We focused much of our 
attention during the analysis of the genome on understanding 
how the overall informational capacity of the genome, as illus- 

trated by these tendencies, correlates with the ability of the 
organism to adapt to different environmental challenges. 

General Metabolism. As expected for free-living organisms, the 
central and intermediary metabolic pathways present in C. 
,iolaceum include the synthesis and catabolism of all 20 amino 
acids as well as the purine and pyrimidine nucleotides. In 
addition, there are pathways for the synthesis of a wide range of 
cofactors and vitamins, although those leading to pantothenate 
and biotin are incomplete. Biosynthesis of complex polysaccha- 
rides including cellulose (but not glycogen) occurs as well as the 
synthesis and degradation of a variety of lipids used for energy 
supply, membrane formation, or energy storage including triac- 
ylglycerol, phospholipids, and lipopolysaccharide. 

The ability of C. violaceum to thrive under diverse environ- 
mental conditions is clearly facilitated by its versatile energy- 
generating metabolism that is capable of exploiting a wide range 
of energy sources by using appropriate oxidases and reductases. 
These collectively permit both aerobic and anaerobic respiration 
(see supplementary information at www.brgene.lncc.br/ 
cviolaceum). In the total absence of oxygen, nitrate or fumarate 
are used as final electron acceptors. The absence of nutrients 
also seems well tolerated through ORFs that act in response to 
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starvation conditions, many of which protect against oxidative 
damage. Examples include ORFs that respond to carbon star- 
vation (cstA: CV0762 and CV1662) and those involved in peptide 
utilization (CV1098, CV1099, and CV1101) (30), the stringent 
starvation ORFs sspA and sspB (CV4005 and CV4004), which 
are induced by glucose, nitrogen, phosphate, or amino acid 
starvation (31), the DNA protection during prolonged starvation 
protein (Dps: CV4253), and the pho regulon. 

Transporters. Transport-related membrane proteins mediate the 
bacterium's direct metabolic interactions with the complex soil 
and aquatic environments that it inhabits. We classified the 496 
ORFs of this kind (-11% of total ORF number) according to 
the Transport Protein Database, which reveals an extended 
collection of specific transporters (see supplementary informa- 
tion www.brgene.lncc.br/cviolaceum). The largest number of 
ORFs (212) are primary active transporters (class 3), of which 
119 belong to the ATP-binding cassette transporter superfamily 
and 26 to the type III (virulence-related) pathway family. In 
addition, oxidoreduction-driven transporters are represented by 
35 ORFs. Class 2, electrochemical potential-driven transporters, 
account for 154 ORFs, of which 144 are various kinds of porters, 
such as those of the major facilitator superfamily (MFS, 46 
ORFs), the drug-metabolite transporter family (DMT, 13 
ORFs), the resistance nodulation cell-division family (RND, 
10 ORFs), the resistance-to-homoserine/threonine family 
(RhtB, 7 ORFs), and the C4-dicarboxylate uptake family (DCU, 
2 ORFs). The presence of multidrug-resistance ORFs, belonging 
to four of the five families of drug exclusion translocases (32), 
illustrates the contribution of membrane transport systems to the 
capacity of C. violaceum to withstand environmentally unfavor- 
able conditions. The transporters of heavy metals include zntA 
(CV1154), which provides C. violaceum with the potential for the 
bioremediation of xenobiotics. Also within class 2 are the ion 
gradient-driven energizers that are exclusively members of the 
TonB family (10 ORFs). There is a total of 35 ORFs related to 
iron metabolism, a particular priority for the bacterium, that 
include enterobactin, bacterioferritin, iron-storage proteins, and 
proteins for iron transport under anaerobic conditions in addi- 
tion to the TonB-related proteins (33). The third most numerous 
class is the channels/pores (class 1), with 62 ORFs including 17 
a-type channels and 41 3-barrel porins. Among the latter, there 
is one sugar porin and several outer membrane-linked receptors 
and factors. This class includes a number of transport systems 
that facilitate resistance to physical change. In this context, in 
addition to the ion transporters, there are systems that control 
the movement of other solutes across the bacterial cell mem- 
brane, as well as aqpZ (CV2864), which is selectively permeable 
to water (34). The four remaining classes, namely group trans- 
locators (class 4, 6 ORFs), transport electron carriers (class 5, 7 
ORFs), accessory factors involved in transport (class 8, 25 
ORFs), and incompletely characterized transport systems (class 
9, 30 ORFs), comprise a total of 68 ORFs. 

Stress Adaptation. The notable abundance of C. violaceum in the 
Rio Negro is indicative of its ability to simultaneously withstand a 
variety of relatively harsh environmental conditions including the 
scarcity of nutrients, high temperatures (often -40?C), high levels 
of radiation, and elevated concentrations of toxic agents including 
reactive oxygen species (2, 3 and 5). To a significant extent, the 
ability to cope with such environmental stress stems from the 
plethora of specific transporters present. Most crucially, these 
transporters permit the efficient exploitation of even very low 
concentrations of nutrients and are also responsible for the ability 
to withstand many toxic agents, although in the latter case several 
other types of resistance proteins are also operative. These include 
the organic hydroperoxide-resistance protein ohr (CV0209 and 
CV2493), disulfide oxidase dsbA (CV3998), and the alkylating 

agents-inducible aidB (CV4136) as well as generic glutathione 
peroxidases, catalases, and aldolases (35). Specific protection 
against oxidative stress in C. violaceum is provided by the two major 
transcriptional regulators SoxR (CV2793) and OxyR (CV3378), 
and similar, hydrogen peroxide-inducible ORFs such as dps andfur 
and other ORFs are also present. A further crucial contribution to 
the resistance of environmental toxicity is provided by a series of 
proteins that ensure maintenance of cellular integrity. These in- 
clude the OmlA lipoprotein (CV1796), also present in P. aeruginosa 
and Burkholderia cepacia, which provides resistance to anionic 
detergents and various antibiotics through the maintenance of cell 
envelope integrity under stress conditions (36, 37) as well as the 
mechanosensitive channel encoded by mscL (CV1360) that serves 
as an osmotic gauge (38). 

Elevated temperatures are combated via a number of re- 
sponses as indicated by the presence of 14 heat-shock-related 
ORFs including the DnaJ-DnaK-GrpE (Hsp70: CV1642, 
CV1643, and CV1645), the GroEL/GroES (mopAB) (CV3232, 
CV3233, CV4014, and CV4015), and the ClpA/B (CV1944, 
CV2557, CV2558, and CV3669) systems in addition to HscA/B 
cochaperones (CV1089 and CV1091), Hsp90 (HptG: CV1318), 
Hsp20 (CV1177), Hsp33 (CV2000), and Htpx (CV3109 and 
CV4263).Tolerance to UV radiation is provided by uvrABC 
(excinuclease/CV1893, CV3152, and CV1305) and uvrD 
(CV0205). In addition, however, there is evidence that violacein 
(CV3271 to CV3274) also contributes to protection against UV 
radiation (3). 

The exquisite control of transcription that would be expected 
to be necessary bring the appropriate permutations of genes into 
play at any one time is effected by the combination of basic 
transcriptional mechanisms, such as RNA polymerase and com- 
mon sigma factors, o-70 (rpoD), a54 (rpoN), o32 (rpoH), o38 (rpoS), 
a28 (fliA), o24 (rpoE), and anti-cr28 factor (flgM), together with 
a large number of transcriptional activators and repressors that 
interact with alternative sigma factors involved in bacterial stress 
responses such as the 36 LysR, 14 AraC, 14 TetR, 12 Mar, 9 
GntR, 5 Mer, 5 AsnC, 4 AsrR, 4 Crp/Fnr, 2 DeoR, 2 cold-shock, 
and 1 LacI family member ORFs. 

Motility. An important contribution to the ability of C. violaceum to 
cope with environmental variability comes from its chemotactic 
capacity. A total of 68 ORFs are related to chemotaxis, of which 41 
code for the methyl-accepting chemotaxis proteins. In comparison 
P. aeruginosa has a total of 43 chemotaxis-related ORFs (29), of 
which 26 are methyl-accepting chemotaxis proteins. Most chemo- 
taxis-related ORFs are scattered throughout the genome, and none 
exhibit closest similarity with ORFs of the phylogenetically closely 
related Neisseria but rather with other free-living bacteria belonging 
mainly to the genera Pseudomonas (18 ORFs) and Ralstonia (10 
ORFs). Some 64 ORFs related to flagellar structure and function 
were identified. The majority of these are contained in five operons 
(twofli, twoflg, and oneflh), although there are also several outlying 
ORFs for flagellar components (see supplementary information 
www.brgene.lncc.br/cviolaceum). 

Quorum Sensing. Proteins that synthesize the specific autoinduc- 
ers of quorum-sensing-controlled systems are evolutionarily well 
conserved and comprise the LuxR-LuxI family of transcriptional 
regulators (39). In C. violaceum two adjacent genes, cviI 
(CV4091) and cviR (CV4090), homologous to luxI and luxR, 
respectively, are transcribed from opposite strands and are 
convergently expressed with an overlap of 73 bp. 

A number of C. violaceum phenotypic characteristics under 
quorum-sensing regulation have been reported including produc- 
tion of the purple pigment violacein (40), cyanide production (via 
the hcnABC operon), and degradation (11) through both the cynT 
(cyanate permease: CV1881) operon as well as cynS (cyanase: 
CV1880). ORFs coding for extracellular chitinases have also been 
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reported to be under quorum-sensing control (41). These ORFs are 
probably responsible for the ability of C. violaceum to survive on 
chitin as sole carbon and nitrogen source (42). Other ORFs present 
in C. violaceum reportedly controlled by quorum sensing (29) are 
those coding for elastase (lasA and lasB) and the antibiotic phena- 
zine (CV0931 and CV2663). Furthermore, some genes coding for 
extracellular enzymes (for example, serine protease, collagenase, 
and oligopeptidase) exhibit upstream regulatory sequences homol- 
ogous to those found in quorum-sensing-controlled genes and thus 
are possibly also regulated in this way. 

Pathogenicity. Although C. violaceum is considered a saprophyte, 
it is also an occasional pathogen of human and animals with most 
cases of human infection occurring either early in childhood or 
in immunocompromised individuals (43). However, the fact that 
the Rio Negro is the source of drinking water for the population 
living around it, without there being widespread infection, 
indicates the low infectivity of this organism. 

The lack of frequent human infection would be expected to 
select against the retention of purely pathogenesis-related genes. 
Thus, an unexpected finding was the presence of ORFs encoding 
type III secretory system (TTSS) components similar to those in 
Salmonella typhimurium (44) and Yersinia pestis (45). The TTSS 
is thought to be strictly associated with the infection of both 
animal or plant cells and acts as a molecular syringe for the 
secretion of effector molecules that provoke cytoskeletal rear- 
rangements in the host cell (46). Because effectors with similarity 
to phytopathogen-associated genes (47) were not found, it seems 
unlikely that TTSS in C. violaceum plays a role in plant infection. 
Indeed, the similarity of the systems found to those in human 
pathogens suggests that they contribute to human infection. 
However, a detailed analysis of the S. typhimurium-like TTSS 
showed that some key ORFs including invl and invH [which have 
been demonstrated to play important roles in invasion (48, 49)] 
and sicP [a Salmonella invasion chaperone involved with the 
secretion of the tyrosine phosphatase SptP (50)] are absent in C. 
violaceum. The lack of these and other pathogenicity-related 
ORFs may account for the generally poor ability of the organism 
to infect humans. It is likely that the presence of these islands is 
isolate-specific. In PCR-based assays we found evidence for their 
presence in some isolates from natural Brazilian environments 
but not in others (see supplementary information at www. 
brgene.lncc.br/cviolaceum). The similarity of the two TTSSs 
with those found in other bacterial species, their presence in 
pathogenicity islands, and the fact that they are quite distinct 
from those found in the closely related opportunistic pathogen 
P. aeruginosa are all consistent with these ORFs being present in 
the C. violaceum genome due to recent lateral transfer. 

Twelve ORFS encoding hemolysin-like proteins (CV0231, 
CV0360, CV0362, CV0513, CV0516, CV0656, CV1917, CV1918, 
CV2873, CV3275, CV3342, and CV4301) are found in both virulent 
and nonvirulent C. violaceum soil isolates (51). Type I and II 
secretory systems, both found in the C. violaceum genome, are likely 
to be also operative in free-living conditions despite their role as 
virulence factors in pathogenic bacteria (52, 53). The same holds 
true for genes coding for ubiquitous components of free-living 
Gram-negative bacteria (54, 55), which may also play a significant 
role in stimulating immune responses in the infected host such as 
the cell-wall-associated lipopolysaccharide and peptidoglycan. 

Biotechnological Potential of C. violaceum. In addition to the 
operon responsible for the synthesis of the well studied violacein 
pigment (CV3274, CV3273, CV3272, and CV3271), there are 
many other ORFs encoding products of biotechnological and 
medical interest. For example, environmental detoxification may 
be mediated by an acid dehalogenase (CV0864), possibly active 
on xenobiotics or metabolic products (56), and also both by an 
operon for arsenic resistance (CV2438 and CV2440) and en- 

zymes that catalyze the hydrolysis of cyanate (57). Conversely, 
cyanide can be used in gold recovery (18) besides being associ- 
ated with the suppression of root fungi diseases (58). Of agri- 
cultural interest are the several chitinases (CV2935, CV3316, and 
CV4240) that are potential biocontrol agents against insects, 
fungi, and nematodes (59, 60). In addition, an insecticidal and 
nematocidal protein (CV1887) similar to those from Xenorhab- 
dus bovienii and Photorhabdus luminescens (61) is also synthe- 
sized by C. violaceum and warrants further studies. 

ORFs for two paraquat-inducible proteins (CV2547 and 
CV2548), potentially useful in bioengineering crops resistant to 
this herbicide, were found closely positioned in the genome. In 
addition, ORFs for the synthesis of medically relevant com- 
pounds include a polyketide synthase (CV4293) and other 
proteins applicable to antibiotic synthesis, genes for the synthesis 
of phenazine (CV0931 and CV2663) with potential antitumor 
activity, and hemolysins (CV0231, CV0513, CV1918, CV3342. 
and CV4301) with potential as anticoagulants. It is established 
already that C. violaceum has the capacity for the synthesis of 
polyhydroxyalkanoate polymers (18, 19), which have physical 
properties similar to propylene, making them an important 
renewable source of biodegradable plastic. In addition, we have 
now identified ORFs related to cellulose biosynthesis (CV2675, 
CV2677, and CV2678) that also might represent a valuable 
commodity, because bacterial cellulose differs from that pro- 
duced by plants in its three-dimensional structure, degree of 
polymerization, and physicochemical properties (62). 

Conclusions 
The sequence and annotation data that we have generated reveal 
that the adaptability and versatility that C. violaceum exhibits 
depend on a large and complex genome containing a large 
proportion of ORFs that are specifically related to the ability of 
the organism to interact and respond to the environment. We 
also demonstrate that this genomic complexity might have 
practical importance in that it translates into the bacterium being 
an important potential source of biotechnologically exploitable 
genes. The identification of such genetic resources in C. viola- 
ceum, a free-living tropical bacteria, justifies the contemplation 
of strategic high-throughput programs to survey further the 
genomes of such organisms. Their inclusion in the pipeline that 
leads to the production of industrially useful genes, enzymes, and 
secondary metabolites would benefit not only the biotechnolog- 
ical and pharmaceutical industries in the developing world, 
where most tropical biodiversity is located, but would also 
provide a further stimulus to the preservation of the precious 
ecosystems where these organisms are found. 
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